

Anlage 6.1.5

2021_08_11_Nachweise A 166 - A 111_RÜB1.1.docx

Schmutzfrachtberechnung der Gemeinde Aurachtal

RÜB 1.1 – Neundorf

Stauraumkanal mit obenliegender Entlastung

Eingangsdaten:

 $Q_{T,h,max}$ (gem. Schmutzfrachtberechnung) = $\frac{0.69 \text{ l/s}}{}$

 $Q_{0(n=1)}$ (Abfluss für n = $1a^{-1}$) = $A_{E,b} * r_{15;n=1} + Drosselabläufe oberhalb lie-$

gender Mischwasserbehandlungsanlagen

 \Rightarrow 4,25 ha * 111,1 l/(s*ha)

= 472 l/s (ohne Q_{t24})

 Q_0 (Abfluss für n = 0,33a⁻¹) = $A_{E,b} * r_{15;n=0,33}$

⇒ 4,24 ha * 162,8 l/(s*ha) + Drosselabläufe

= 691,3 l/s (ohne Q_{t24})

 $Q_{0,max}$ (Abfluss für n = 0,05a⁻¹) = 1.340 l/s

⇒ nach hydrodynamischer Netzberechnung

 Q_{krit} (Abfluss für Q_{krit}) = $A_{E,b} * 30 l/(s*ha) + Q_{t24} + Drosselabläufe$

⇒ 4,24 ha * 30 l/(s*ha) + Drosselabläufe

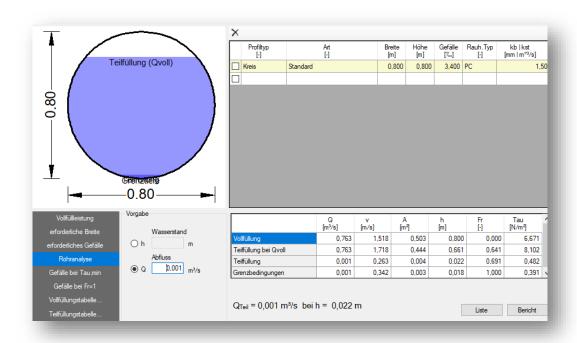
= 127,2 l/s + 0,38 l/s = 127,6 l/s

 Q_{Dr} (Drosselabfluss) = $Q_{Dr} = 7.0 \text{ l/s}$

Anlage 6.1.5

2021_08_11_Nachweise A 166 - A 111_RÜB1.1.docx

Schmutzfrachtberechnung der Gemeinde Aurachtal


Nachweise:

Zulaufkanal:

 $Q_{T (A-110)} \Rightarrow \tau \ge 1 \text{ N/m}^2$

 \Rightarrow Q_{T (A-110)} \triangleq Q_{T,h,max} = 0,69 l/s

Nennweite: DN 800 Sohlgefälle: 3,4 ‰

 $\Rightarrow \quad \tau = 0.48 \text{ N/m}^2 < 1 \text{ N/m}^2$ Nachweis nicht erbracht

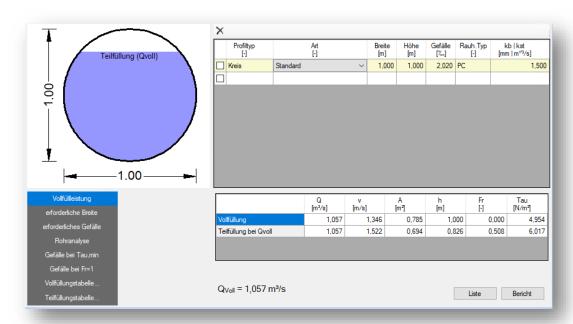
Aufgrund des kleinen Einzugsgebiets und dem damit verbundenen sehr geringen Trockenwetterabfluss, kann der Nachweis zur minimalen Schleppspannung nicht erbracht werden. Es empfiehlt sich daher, den Zulaufkanal häufiger zu spülen.

Anlage 6.1.5

2021_08_11_Nachweise A 166 - A 111_RÜB1.1.docx

Schmutzfrachtberechnung der Gemeinde Aurachtal

Entlastungskanal Beckenüberlauf:


Leistungsfähigkeit

 $Q_{0,max} \Rightarrow Q_v \ge Q_{0,max}$

⇒ Nennweite: DN 1000

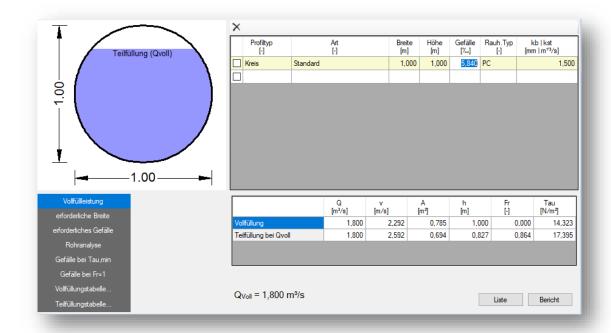
Sohlgefälle: 2,32 ‰ (im Mittel)

L = 188,20 m

 $Q_v = 1.057 \text{ l/s} < Q_{0,max} = 1.340 \text{ l/s}$ Nachweis nicht erbracht

Im Freispiegel ist die Dimension des Entlastungskanals zur Mittleren Aurach nicht auf das 20-jährige Regenereignis ausgelegt.

Bei maximalen Einstau hinter der Schwelle liegt allerdings ein Energieliniengefälle ((OK Schwelle – Sohle Auslauf) / 188,2 m) von 5,84 ‰.


Der Entlastungskanal DN 1000 läuft unter Einstau und kann die Entlastung schadlos das Regenrückhaltebecken leiten.

Anlage 6.1.5

2021_08_11_Nachweise A 166 - A 111_RÜB1.1.docx

Schmutzfrachtberechnung der Gemeinde Aurachtal

 $Q_v = 1.800 \text{ l/s} > Q_{0,max} = 1.340 \text{ l/s}$

Nachweis unter Einstau erbracht

Beckenüberlauf (Schwelle):

Q_{0(n=1)} bei BHW

 \Rightarrow Q_{0(n=1)} = 472 l/s

Spez. Schwellenbelastung < 700l/(s*m)

⇒ Schwellenlänge: 4,00 m

Schwellenhöhe: 2,12 * d₀ (> 1,0 * d₀)

472 l/s / 4.0 m = 118 l/(s*m) < 700 l/(s*m)

Nachweis erbracht

Vollkommener Überfall

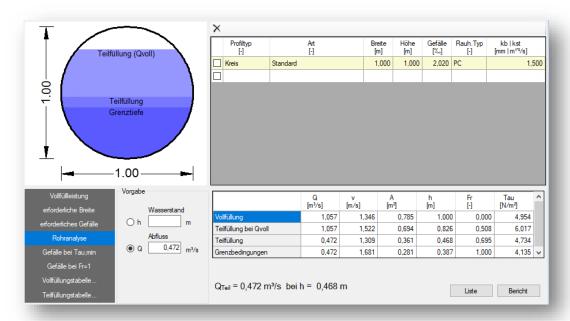
Ermittlung h_ü für $Q_{0(n=1)} = 472 \text{ l/s}$

Wsp ≤ Wsp gem. Kanalnetzberechn.

OK_{Schwelle}: 303,75 mNN

Die Wasserspiegellinie im Entlastungskanal liegt beim Bemessungsabfluss $Q_{0(n=1)}$ bei 0.47 m.

Die Wasserspiegellinie hinter der Schwelle ergibt sich somit aus der Sohlhöhe



Anlage 6.1.5

2021_08_11_Nachweise A 166 - A 111_RÜB1.1.docx

Schmutzfrachtberechnung der Gemeinde Aurachtal

(303,03 mNN) und der Ablaufhöhe (0,47 m) zu 303,50 mNN.

 $Wsp = 303,50 \; mNN < OK_{Schwelle} = 303,75 \; mNN$

⇒ vollkommener Überfall

Nachweis erbracht

Drosselorgan:

Im derzeitigen Bestand wird der Abfluss aus dem RÜB 1.1 über die weiterführende Pumpstation mittels Schieber auf der Druckleitung auf 3 l/s begrenzt.

Durch Probleme im Betriebsablauf soll dieser Schieber künftig komplett geöffnet werden, sodass 7 l/s aus dem RÜB 1.1 gefördert werden.

Rückstaufreiheit MS

$$\Rightarrow Q_{T,h,max} = 0.7 \text{ l/s}$$

$$0.7 \text{ l/s} * 1.2 = 0.84 \text{ l/s} < 7 \text{ l/s} = Q_{Dr}$$
Nachweis erbracht

Anlage 6.1.5

2021_08_11_Nachweise A 166 - A 111_RÜB1.1.docx

Schmutzfrachtberechnung der Gemeinde Aurachtal

Druckrohrleitung DN 100:

Fließgeschwindigkeit

$$1.0 < v < 2.4 \text{ m/s}$$

$$\Rightarrow v = \frac{Q}{A} = \frac{4*Q}{\pi*d^2}$$

$$\Rightarrow v = \frac{4*0,007 \frac{m^3}{s}}{\pi*(0,10m)^2} = 0.9 \frac{m}{s}$$

1.0 > 0.9 < 2.4 m/s

Nachweis nicht erbracht

Im Bestand wird die weiterzugebende Drosselmenge über Freistromradpumpen der Fa. KSB in Richtung Königsstraße gepumpt. Da die Pumpen nicht steuerbar sind, empfiehlt sich statt des Erwerbs neuer Pumpen, ein häufigeres Molchen der Druckleitung vorzunehmen.

Probleme mit H₂S-Bildung und etwaige Geruchsbelästigungen sind der Gemeinde nicht bekannt.

Rechen:

Rechenverlust für Q_{0,max}

⇒ Rechen nach Herstellerangaben (Fa. HST) verbaut

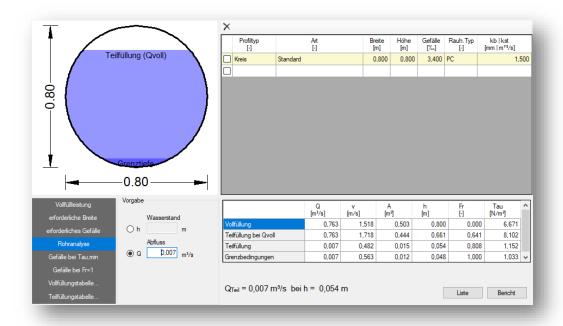
Trennbauwerk:

Q_{dr} (Wsp. < OK Schwelle TB)

⇒ OK Schwelle TB 303,75 mNN

 $Q_{Dr} = 7.0 \, l/s$

Zulaufgerinne Nennweite: DN 800


Sohlgefälle: 3,4 ‰

Anlage 6.1.5

2021_08_11_Nachweise A 166 - A 111_RÜB1.1.docx

Schmutzfrachtberechnung der Gemeinde Aurachtal

 $h_T = 0.054 \text{ m} \Rightarrow Wsp._T 302.05 + 0.05$

 $h_T = 302,10 \text{ mNN} < 303,75 \text{ mNN}$

Nachweis erbracht

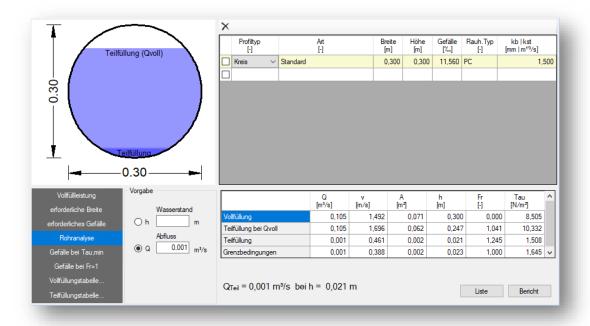
Stauraumkanal:

Teilfüllungsgeschwindigkeit für $Q_{T,h,max}$ und Schleppspannung

 \Rightarrow Q_{T,h,max} = 0,69 l/s

Nennweite:

DN 2000 mit TW-Rinne DN 300


Sohlgefälle: 11,56 ‰

Anlage 6.1.5

2021_08_11_Nachweise A 166 - A 111_RÜB1.1.docx

Schmutzfrachtberechnung der Gemeinde Aurachtal

 \Rightarrow $v_t = 0.46 \text{ m/s} < 0.5 \text{ m/s}$

 $\Rightarrow \tau_t = 1,65 \text{ N/m}^2 > 1,3 \text{ N/m}^2$

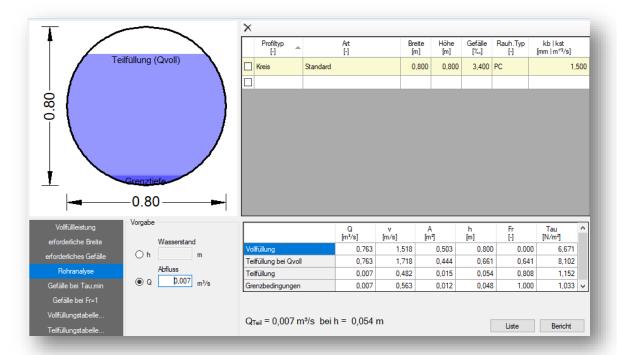
Nachweis erbracht

Anlage 6.1.5

2021_08_11_Nachweise A 166 - A 111_RÜB1.1.docx

Schmutzfrachtberechnung der Gemeinde Aurachtal

Trennbauwerk:


Q_{dr} (Wsp. ≤ OK Schwelle TB)

⇒ OK Schwelle TB 303,75

 $Q_{Dr} = 7 l/s$

Zulaufgerinne Nennweite: DN 800

Sohlgefälle: 3,4 ‰

 $h_T = 0.05 \text{ m} \Rightarrow Wsp._T 302.05 + 0.05$

 $h_T = 302,10 \text{ mNN} < 303,75 \text{ mNN}$

Nachweis erbracht

Anlage 6.1.5

2021_08_11_Nachweise A 166 - A 111_RÜB1.1.docx

Schmutzfrachtberechnung der Gemeinde Aurachtal

	-				
	Dimensionierung und Nachweis eines Regenüberlaufs nach DWA-A 111				
Projekt:	tt: RÜB 1.1 (SKO) Neundorf				
Nachweis:	Detaillierte Berechnung (insbesondere der Drossel) in Anlehnung an DW	A-A 111			
Abflüsse:	Trockenwetterabfluss (Nachweis der Drossel und der Ablagerungen)	Qt	[m³/s]	0,001	
	Mischwasserabfluss (Nachweis der Funktionstüchtigkeit des Bauwerks)	Qmax	[m³/s]	0,472	

Kenngrößen des Zulauf- und des Auslasskanals

Bauwerksteil	Bezeichnung	Abk.	Einheit	Wert
Zulaufkanal	Profildefinition			Kreis (Standard)
	Profilbreite	bPr	[m]	0,800
	Profilhöhe	her	[m]	0,800
	Sohlhöhe oben	hso,o	[m+NN]	302,063
	Sohlhöhe unten	hs _{o,u}	[m+NN]	302,050
	Länge	L	[m]	3,90
	Sohlgefälle	Jso	[‰]	3,33
	Rauheitsansatz	MS; PC		PC
	Rauheitsbeiwert	k_{St} ; k_b	[m ^{1/3} /s; mm]	1,50
	Rohrquerschnitt	Av	[m ²]	0,503
	Vollfüllleistung	$\mathbf{Q}_{\mathbf{v}}$	[m³/s]	0,755
	Vollfüllgeschwindigkeit	Vv	[m/s]	1,502

Auslasskanal	Profildefinition			Kreis (Standard)
	Profilbreite	b Pr	[m]	1,000
	Profilhöhe	her	[m]	1,000
	Sohlhöhe oben	hso,o	[m+NN]	303,030
	Sohlhöhe unten	hs _{o,u}	[m+NN]	302,571
	Länge	L	[m]	164,10
	Sohlgefälle	Jso	[‰]	2,80
	Rauheitsansatz	MS; PC		PC
	Rauheitsbeiwert	k_{St} ; k_b	[m ^{1/3} /s; mm]	1,50
	Rohrquerschnitt	Av	[m ²]	0,785
	Vollfüllleistung	Qv	[m³/s]	1,245
	Vollfüllgeschwindigkeit	Vv	[m/s]	1,585

Anlage 6.1.5

2021_08_11_Nachweise A 166 - A 111_RÜB1.1.docx

Schmutzfrachtberechnung der Gemeinde Aurachtal

	-			
	Dimensionierung und Nachweis eines Regenüberlaufs nach	h DWA	-A 111	
Projekt:	RÜB 1.1 (SKO) Neundorf			
Nachweis:	Detaillierte Berechnung (insbesondere der Drossel) in Anlehnung an DW	A-A 111		
Abflüsse:	Trockenwetterabfluss (Nachweis der Drossel und der Ablagerungen)	Qt	[m³/s]	0,001
	Mischwasserabfluss (Nachweis der Funktionstüchtigkeit des Bauwerks)	Qmax	[m³/s]	0,472

Kenngrößen der Drossel und des Regenüberlaufs (Wehr)

Bauwerksteil

Drosselorgan

Bezeichnung

Kennlinienwerte (max 11)

PW RÜB 1.1

h	Q
[m]	[m³/s]
0,000	0,000
0,001	0,007
5,000	0,007

	Bezeichnung	Abk.	Einheit	Wert	
Regenüberlauf	Überfalltyp	brei	t, scharfkantig, v	vaagerecht	
	Berechnungsansatz	Berechnung nach Poleni Schwelle - Einseitig			
	Einseitig / Zweiseitig				
	Sohlhöhe oben	h _{So,o}	302,050		
	Sohlhöhe unten	hso,u	[m+NN]	301,730	
	Schwellenlänge	Lū	[m]	4,00	
	Sohlgefälle im Regenüberlauf	Jso	[‰]	80,00	
	Überfallbeiwert (nicht abgemindert)	μ	[m]	0,49	
	Wehroberkante, oben	$OK_{Wehr,o}$	[m+NN]	303,75	
	Wehroberkante, unten	$OK_{Wehr,u}$	[m+NN]	303,75	
	Wehroberkante, mittel	$OK_{Wehr,m}$	[m+NN]	303,75	
	Bauwerkshöhe (Unterkante - Decke)	hDecke	[m+NN]	304,33	
	Bauwerkslänge	LBauwerk	[m]	4,00	

Anlage 6.1.5

2021_08_11_Nachweise A 166 - A 111_RÜB1.1.docx

Schmutzfrachtberechnung der Gemeinde Aurachtal

ung und Nachweis eines Regenübe eundorf hnung (insbesondere der Drossel) in Anleh luss (Nachweis der Drossel und der Ablag iss (Nachweis der Funktionstüchtigkeit de Berechnungsergebnisse emetrie und den hydraulischen Randber stand = Schwellenhöhe ing bei Mischwasserzufluss - Q _{max} enüberlauf (Vorgabe)	nnung an DW erungen) s Bauwerks)	A-A 111 Qt	[m³/s] [m³/s]	0,001 0,472
hnung (insbesondere der Drossel) in Anleh luss (Nachweis der Drossel und der Ablag iss (Nachweis der Funktionstüchtigkeit de Berechnungsergebnisse sometrie und den hydraulischen Randber stand = Schwellenhöhe ng bei Mischwasserzufluss - Q _{max} enüberlauf (Vorgabe)	erungen) s Bauwerks) dingungen	Qt Qmax	[m³/s]	
luss (Nachweis der Drossel und der Ablag iss (Nachweis der Funktionstüchtigkeit de Berechnungsergebnisse cometrie und den hydraulischen Randber stand = Schwellenhöhe ing bei Mischwasserzufluss - Q _{max} enüberlauf (Vorgabe)	erungen) s Bauwerks) dingungen	Qt Qmax	[m³/s]	
Berechnungsergebnisse cometrie und den hydraulischen Randber stand = Schwellenhöhe ag bei Mischwasserzufluss - Q _{max} enüberlauf (Vorgabe)	s Bauwerks)	Qmax	[m³/s]	
Berechnungsergebnisse cometrie und den hydraulischen Randber stand = Schwellenhöhe ng bei Mischwasserzufluss - Q _{max} enüberlauf (Vorgabe)	dingungen			0,472
stand = Schwellenhöhe ng bei Mischwasserzufluss - Q _{max} enüberlauf (Vorgabe)		[m³/s]	0,007	
stand = Schwellenhöhe ng bei Mischwasserzufluss - Q _{max} enüberlauf (Vorgabe)		[m³/s]	0,007	
ng bei Mischwasserzufluss - Q _{max} enüberlauf (Vorgabe)	Qkrit	[m³/s]	0,007	
enüberlauf (Vorgabe)				
fluss	Qmax	[m³/s]	0,472	
	Q _{ent}	[m³/s]	0,465	
3	\mathbf{Q}_{d}	[m³/s]	0,007	
	Trenn	[%]	0,0	
chwelle bei Mischwasserzufluss - Q _{mex}				
	OK _{Wehr,m}	[m+NN]	303,750)
	Lū	[m]	4,000	
ert)	μ	[-]	0,490	
ulischer Berechnung des Auslasskanals)	hu	[m+NN]	303,558	3
	μ'	[-]	0,490	
es Streichwehrs	$h_{\bar{u},m}$	[m]	0,186	
nn des Streichwehrs	hū,o	[m]	0,183	
e des Streichwehrs	hū,u	[m]	0,188	
	h _{FB}	[m]	0,392	
ei Mischwasserzufluss - Q _{mex}				
	Qmax /Qvoll	[%]	62,5	
	h _{max,u} /h _{Pr}	[%]	230,4	
	Fr_{zu}	[-]	0,00	
bei Mischwasserzufluss - Q _{max}				
uslasskanals	h _{ent,u}	[m+NN]	302,955	;
	Q _{ent} /Q _{voll}	[%]	37,3	
nt/Q _{voll})	hent,o/hPr	[%]	49,0	
nt/Qvoll)		[-]		
	nn des Streichwehrs e des Streichwehrs el Mischwasserzufluss - Q _{mex} bel Mischwasserzufluss - Q _{mex} uslasskanals nt/Q _{voil})	nn des Streichwehrs e des Streichwehrs hū,u hFB	hi,o	nn des Streichwehrs hü,o [m] 0,183 hü,u [m] 0,188 hFB [m] 0,392 ii Mischwasserzufluss - Qmex Qmax/Qvoll [%] 62,5 hmax,u/hPr [%] 230,4 Frzu [-] 0,00 bel Mischwasserzufluss - Qmex uslasskanals hent,u [m+NN] 302,955 mt/Qvoll Qent/Qvoll [%] 37,3

Anlage 6.1.5

2021_08_11_Nachweise A 166 - A 111_RÜB1.1.docx

Schmutzfrachtberechnung der Gemeinde Aurachtal

	Dimensionierung u	ınd Nachweis ein	es Regenüberl	aufs nac	h DWA-A	111	
Projekt:	RÜB 1.1 (SKO) Neundo	orf					
Nachweis:	Detaillierte Berechnung	(insbesondere der D	rossel) in Anlehnu	ing an DW	A-A 111		
Abflüsse:	Trockenwetterabfluss (I	Nachweis der Drosse	l und der Ablageru	ungen)	Qt	[m³/s]	0,001
	Mischwasserabfluss (N	lachweis der Funktion	nstüchtigkeit des E	Bauwerks)	Qmax	[m³/s]	0,472
Nachweis	kenngrößen nach l	DWA-A 111 und	ATV-A 128				
Überprüfur	ng des Fließzustands im	Zulaufkanal (obere	s Ende)	Sollwert	Istwert		
Mindestab	stand für den Nachweis	A 111, Kap 5.3	>= 20 h _{Pr,zu}	>= 16,00	3,90	[m]	*
Froudezah	nl für Q _{krit}	A 111, Kap 5.3 *	<= 0,75	<= 0,75	0,00	[-]	✓
Froudezah	nl für Q _{max}	A 111, Kap 5.3 *	<= 0,75	<= 0,75	0,00	[-]	✓
Überprüfur	ng des Regenüberlaufs	und des Wehres		Sollwert	Istwert		
Schwellen	höhe (unten)	A 128, Kap 10.1.2	> 0,05 + h _{Pr,Dr}	> 2,05	2,02	[m]	×
Schwellen	höhe für Q _{krit} (unten)	A 111, Gl. 14 ** >	= du+ ζ • vu² / (2g)	>= 2,00	2,02	[m]	✓
Sohlhöhen	differenz im RÜ	A 111, Kap. 6.1.5	>= 3 cm	>= 3,0	32,0	[cm]	✓
Sohlhöher	ndifferenz im RÜ für Qt	A 111, Gl. 13 >	= (siehe Quelle)	>= 2,79	32,0	[cm]	✓
Vollkomm	ener Überfall für Q _{max}	A 111, Kap 5.2 (be	vorzugter Betrieb	szustand)	ja (sie	ehe S.3)	
Überprüfur	ng der Drosselstrecke			Sollwert	Istwert		
Mindestdu	rchmesser	A 111, Kap. 6.1.5	>= 200 mm	>= 200	2000	[mm]	1
Höchstdur	chmesser ***	A 111, Kap. 6.1.5	<= 500 mm	<= 500	2000	[mm]	*
Mindestlän	ige	A 111, Kap. 6.1.5	>= 20 h _{Pr,D}	>= 40,0	26,08	[m]	*
maximale l	Länge	A 111, Kap. 6.1.5	<= 100 m	<= 100	26,08	[m]	1
maximales	Sohlgefälle Jso	A 111, Kap. 6.1.5	<= 3 ‰	<= 3,0	21,1	[‰]	×
Schubspar	nnung bei Qt	A 111, Kap. 6.1.5	>= 4,1 Q ^{1/3}	>= 0,41	0,00	[N/m ²]	*
Verhältnis	Lo / h _{Pr,D}	A 111, Kap. 6.1.5	möglichst h	noch	28,08	[-]	
Wege	n der Anordnung eines Dro	sselorgans haben die g	rau hinterlegten We	rte lediglich	informative	n Charakter	

^{*} bei Froudezahlen = 0 => Druckabfluss, siehe auch Seite 5 'Warnungen - Zulaufkanal'

^{**} mit ζ = 2 gemäß DWA-A 111 Gl. 13 => [1 + 0,45 (Einlauf) + 0,55 (betrieblicher Zuschlag)]

^{***} gilt für freien Auslauf; bei ständigem Rückstau in Scheitelhöhe des Auslaufs entfällt die Begrenzung auf Höchstdurchmesser