

1. Vorgaben

Nennweite $D_{Dr} = 200 \text{ mm}$ mittlerer Drosselabfluss $Q_{Dr} = 16 \text{ l/s}$ (nach DWA-A 111) (nach Anlage 7)

2. Ungesteuerte Rohrdrossel

Rohrdrossel DN 200 PVC Sohlgefälle $I_S = 0.4 \%$ WSP-Gefälle $I_{WSP} = 7.0 \%$

Q_{max} bei Einstau

<u>Rohrkenngrößen</u>				
Bezeichnung	Abk.	Einheit	Wert	
Breite	b _{Pr}	[m]	0,200	
Höhe	h_{Pr}	[m]	0,200	
Gefälle	J_{So}	[‰]	70,0	
Neigungswinkel	α	[°]	4,004	
Rauheitsansatz	MS / PC	[-]	PC	
Rauheitsbeiwert	k_b	[mm]	1,500	
kinematische Viskosität	ν	[m²/s]	1,0e-06	
Dichte des Fluids	ρ	[kg/m³]	0998,2	

Berechnungstyp: Berechnung der Vollfüllleistung bei gegebener Geometrie

Vorgabewert: keine Vorgabe

Bezeichnung	Abk.	Einheit	Vollfüll- leistung	Teilfüllung (bei: Q _{voll})	Teilfüllung (bei: kein	Grenzwerte e Vorgabe)
Abfluss	Q	[m³/s]	0,089	0,088	0,000	0,000
Füllhöhe	h	[m]	0,200	0,164	0,000	0,000
Teilfüllung	h/h _{Pr}	[%]	100,0	82,0	0,0	0,0
Querschnittsfläche	Α	[m²]	0,031	0,028	0,000	0,000
benetzter Umfang	lu	[m]	0,628	0,453	0,000	0,000
hydraulischer Radius	r_{hy}	[m]	0,050	0,061	0,000	0,000
Fließgeschwindigkeit	v	[m/s]	2,819	3,209	0,000	0,000
Froudezahl	Fr	[-]	0,000	2,418	0,000	0,000
Reynoldzahl	Re	[-]	5,6e+05	7,8e+05	0,0e+00	0,0e+00
Lambda	λ	[-]	0,035	0,032	0,000	0,000
Schleppspannung	$\tau_{ vorh}$	[N/m²]	34,335	41,713	0,000	0,000
Tau_min = 4,1 Q/3	τ _{min,M,R}	[N/m²]	1,827	1,827	0,000	0,000
Tau_min = 3,4 Q/3	$\tau_{\text{min,S}}$	[N/m²]	1,515	1,515	0,000	0,000

 $Q_{max} > Q_{Dr}$

Es ist ein Drosselorgan zur Steuerung erforderlich.

© Gaul Ingenieure GmbH Seite 1 von 2

3. Gewählte Lösung

Konisches Wirbelventil UFT-FluidCon

Das Rückstauventil wird vor die Drosselleitung gesetzt und entwässert aktiv und gesteuert in den Uttenreuther Graben. Die genaue Bemessung des Ventils erfolgt über den Hersteller und erfolgt passgenau an die maximale Wasserspiegeldifferenz Δh .

In der Ausführungsplanung werden zusätzliche Maßnahmen gegen Verklausung vorgesehen, z.B. ein Sandfang für den Einlauf und ein Schutzgitter.

4. Produktbeschreibung

Produktbeschreibung Konisches Wirbelventil (siehe Anlage 10):

http://www.uft-brombach.de/hydro-mechanik/abfluss-wasserstand/012-abflusssteuerung-aktiv/detail/0121n-konisches-wirbelventil-nasse-aufstellung-uft-fluidcon/

Das Gerät ist so eingestellt, dass bei Erreichen des Notüberlaufs (h_1 in der Bemessung) genau 16 l/s abgeleitet werden. Steigt der Wasserspiegel weiter, so steigt auch der Abfluss durch das Wirbelventil. Bei einem Anstieg von weiteren 5 cm ergibt sich z.B. ein Q = 16,43 l/s. Letztlich wird der Drosselabfluss beim Bemessungswasserstand bzw. Bemessungsereignis eingehalten. Bei Abflüssen über dem Bemessungsregen kommt es zu einem Anspringen des Notüberlaufs.

© Gaul Ingenieure GmbH Seite 2 von 2